Embedded Python in Practice

D. S. Ljungmark

Modio AB

Secure & efficient energy Information

Ernbodded Duthon in Practi
Low Performance Python
Python for Tiny Data using Python

D. S. Ljungmark

Modio AB

Secure & efficlent energy Information

We do embedded

Robust systems that

live on the net
do things with things
the machines you don't see

Secure & efficient energy Information

"“Embedded”

Computers you don’t see.
Things you don't interact with.

Secure & efficient energy Information

SCADA

(Systems Control And Data Acquisition)

Not Realtime Controllers
Gather
Log
Upload
Reconfigure

Secure & efficient energy Information

SCADA: In Practice

Serial connections
of different sorts

Secure & efficlent energy Information

Embedded: In Practice

The code is not very creative

Secure & efficlent energy Information

Embedded: In Practice

Optimize for Maintainability

Secure & efficlent energy Information

Linux

It's all Linux systems

Sometimes with unorthodox
userspace

Secure & efficlent energy Information

The Pleasures of Python

Easy to go low level
Bit banging
Structs
C integration

Secure & efficient energy Information

The Pleasures of Python

Rapid development

Libraries
Cross platform
Tooling (tests, etc)

Secure & efficient energy Information

The Pleasures of Python

Solid

Reliable
Maintainable

If you do it “right”

Fast enough

Secure & efficient energy Information

But there are problems

And sometimes solutions

Secure & efficlent energy Information

The Problems

Constraints:
Memory
Disk
Licensing
Clocks
Performance

Secure & efficient energy Information

The Problems

Behaviour:

Recovery
Debugging
Reliability

Secure & efficlent energy Information

The Problems

Infrastructure:
Deploying
Updating
Launching
Running

Secure & efficient energy Information

.
MEDIO

Secure & efficlent energy Information

Constraints

Memory
Disk
Licensing
Clocks
Performance

Secure & efficlent energy Information

Constraints: Memory

The famous OOM Kkiller

Secure & efficlent energy Information

Constraints: Memory

Avoid multiple CPython instances
(even when they should be separate)

Secure & efficient energy Information

Constraints: Memory

for step in itertools.izip(
second.mainloop(),
first.mainloop()):

step()

Secure & efficient energy Information

Constraints: Memory

Manually calling GC

while True:
do_stuff()
gc.collect()
time.sleep(1)

Secure & efficient energy Information

Constraints: Memory

Manual memory management

lifetime
allocation in loops

Secure & efficient energy Information

Constraints: Memory

oldgarb = len(gc.garbage)
while .
do stuff()
newgarb = len(gc.garbage)
assert oldgarb is newgarb

Secure & efficient energy Information

Constraints: Disk

Less storage than RAM

Secure & efficient energy Information

Constraints: Disk
tmpfs is RAM

What happens if you run out of
RAM?

Secure & efficient energy Information

Constraints: Disk

binary .egg use a lot of space
(temp files, unpacking)

Secure & efficlent energy Information

Constraints: Disk

Ship .egg directories on
compressed filesystem

Secure & efficlent energy Information

Constraints: Disk

Ship .pyo files only
(ugly, but works)

Secure & efficlent energy Information

Constraints: Disk

Or disable cache files:
export PYTHONDONTWRITEBYTECODE=" 3

Secure & efficlent energy Information

Constraints: Disk

SQLite lock contention

Secure & efficient energy Information

Constraints: Disk

def _execute(self, *args, **kwargs):
for attempt in range(self.timeout + 1):
try:
with self. connection:
return self. cursor.execute(*args, **kwargs)
except sqlite3.OperationalError as e:
if attempt == self.timeout:
raise
if e.args[0] == " "
time.sleep(1)
else:

raise

Secure & efficient energy Information

Constraints: Licensing

We write GPL code

Secure & efficlent energy Information

Constraints: Licensing

GPL requires awareness
Need to save exact version

Secure & efficient energy Information

Constraints: Licensing

Can't trust the Cheese Shop

Secure & efficlent energy Information

Constraints: Licensing

Licences:
Differ between pypi & code

Secure & efficient energy Information

Constraints: Licensing

Licences:
Change between versions

Secure & efficlent energy Information

Constraints: Licensing

Licence summary:

GPL is good
BSD is good
MIT is good

Be careful and ever vigilant

Secure & efficient energy Information

Constraints: (RTC) Clocks

14! 14! Cthulhu!

Secure & efficient energy Information

Constraints: (RTC) Clocks

Time warps due to clock sync

Secure & efficlent energy Information

Constraints: Clocks

There are ways to “cheat”

Jump to last time we logged
Go online
Fix clock and store difference

Secure & efficient energy Information

Constraints: Clocks

Time Is relative

And semetimes wrong
And mostly wrong

Secure & efficient energy Information

Constraints: Clocks

This causes Issues

“Do the time warp”
Timestamps
Racing

Locking

Secure & efficient energy Information

Constraints: Clocks

All code has to be aware

readings
loops
lockfiles

Secure & efficient energy Information

Constraints: Clocks

.pyc files newer than .py files
after updates

Secure & efficient energy Information

Constraints: Clocks

It's better now (py3)
time.monotonic()

Secure & efficlent energy Information

Constraints: Clocks

Life without an RTC?
Painful, no matter what.

Secure & efficient energy Information

Constraints: Performance

Usually good enough

Secure & efficlent energy Information

Constraints: Performance

But without an FPU?

Secure & efficlent energy Information

Constraints: Performance

Fake .
(hint: Linux does it for you)

Secure & efficlent energy Information

Constraints: Performance

But still: Don’t do math

Secure & efficlent energy Information

Constraints: Performance

Most crypto doesn’t use
floating point

Secure & efficient energy Information

Constraints: Performance

FPU-less hardware is slow

Secure & efficlent energy Information

Constraints: Performance

This makes race conditions...

Jfun

Secure & efficlent energy Information

Constraints: Performance

start A

start B

A loads modules... (10)
B starts faster...

B needs A.... (fail, crash)
A started

Secure & efficient energy Information

Constraints: Performance

You need infrastructure

“T am functional”

Secure & efficient energy Information

Constraints: Performance

You need infrastructure

Not usually present

Secure & efficient energy Information

Constraints: Performance

Slow IO + Slow CPU

file collisions

Secure & efficient energy Information

Constraints: Performance

with open(fnam, “r”) as f:

Race happens here
unlink(fnam)
data = f.read()

Secure & efficient energy Information

Constraints: Performance

Wanted: Proper support for
“atomic open & unlink”

Secure & efficient energy Information

Constraints: Performance

with open(fnam, “ru”) as f:
os.path.exists(fnam)

Secure & efficient energy Information

Constraints: Performance

Also Wanted: Proper support for
“‘open & lock”

Secure & efficient energy Information

Constraints: Performance

with open(fnam, “w”) as f,
fcntl.flock(f) as lock:

Secure & efficient energy Information

.
MEDIO

Secure & efficlent energy Information

Behaviour

Recovery
Debugging
Reliability

Secure & efficient energy Information

Behaviour: Recovery

“Crash only software”

Secure & efficlent energy Information

https://lwn.net/Articles/191059
https://lwn.net/Articles/191059

Behaviour: Recovery

No normal termination

Secure & efficlent energy Information

Behaviour: Recovery

No long lived processes
while True:
while periodical():
(Too complex to show)

Secure & efficient energy Information

Behaviour: Debugging

Logging Exceptions to disk

sys.excepthook

oloading Excant

Secure & efficient energy Information

Behaviour: Debugging

Exception hooks

def delayed exc(delay):
def dec(orig hook):
def exc hook(type , value, trace):
orig hook(type , value, trace)
if type 1is not
time.sleep(delay)
return exc_hook
return dec

Secure & efficient energy Information

Behaviour: Debugging
Stacktrace on -SIGUSR1

def stacktrace on_sigusrl(logfile):
def stacktrace(sig, frame):
with open(logfile,) as output:
with redirect stderr(output):
dumpstacks(sig, frame)
return
return signal.signal(signal.SIGUSR1,
stacktrace)

Secure & efficlent energy Information

Behaviour: Reliability

Delayed exceptions

“It's fine to crash, later”

Secure & efficient energy Information

Behaviour: Reliability
Delayed Exceptions

error =
while mainloop():
if error:
raise error
for thing in things():

try.:
mangle(thing)
except as e:
error = e

Secure & efficient energy Information

Behaviour: Reliability

What | want to write

while mainloop():
with delayed exceptions():
for thing in things():
mangle(thing)

Secure & efficient energy Information

Behaviour: Debugging
(I want type hints)

def foonction(bar, baz):
assert isinstance(bar, Barclass)
assert isinstance(baz, Bazclass)

Secure & efficient energy Information

.
MEDIO

Secure & efficlent energy Information

Infrastructure

Deploying
Updating
Launching
Running

Secure & efficlent energy Information

Infrastructure: Code

We built our own for:

Deploy & Update
Manual cleanout

Including .pyc/.pyo __ pycache

Secure & efficient energy Information

Infrastructure: Code

We built our own

It mostly looks like “rpm’

Secure & efficlent energy Information

Infrastructure

Launching
Running

Secure & efficient energy Information

Infrastructure: Launching

Ordering
Wait for finish (signaling)
Timeout

Secure & efficient energy Information

Infrastructure: Running

Is it running?

Has it hung?
Reliably restart
Locks & lockfiles?

Secure & efficient energy Information

Infrastructure: systemd

Systemd fixes:

Launching
Event based
Signalling “I'm ok”

Secure & efficient energy Information

systemd: signalling

def systemd ready(addr, sock):
msg =
if not (addr and sock):
return
try:
retval = sock.sendto(msg, addr)
except socket.error:
return
return (retval > 0)

Secure & efficient energy Information

Infrastructure: systemd

Systemd fixes:

Running
e \Watchdog
e Restarting

Secure & efficient energy Information

systemd: watchdog

def watchdog ping(addr, sock):
msg =
if not (addr and sock):
return False
try:
retval = sock.sendto(msg, addr)
except socket.error:
return False
return (retval > 0)

Secure & efficlent energy Information

Infrastructure: systemd

We like systemd
Replaced init+runit
Gained functionality

Secure & efficient energy Information

Recap

Python is a solid choice

Secure & efficient energy Information

Recap

Python lacks some tooling

“crash later”
“Atomic read & unlink”
Type hints

Secure & efficient energy Information

Recap

Python works in embedded

Secure & efficient energy Information

Questions?

P.S. Code samples under MIT licence.

Secure & efficlent energy Information

