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We do embedded

Robust systems that

live on the net
do things with things
the machines you don't see
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"“Embedded”

Computers you don’t see.
Things you don't interact with.
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SCADA

( Systems Control And Data Acquisition )

Not Realtime Controllers
Gather
Log
Upload
Reconfigure
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SCADA: In Practice

Serial connections
of different sorts
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Embedded: In Practice

The code is not very creative
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Embedded: In Practice

Optimize for Maintainability
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Linux

It's all Linux systems

Sometimes with unorthodox
userspace
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The Pleasures of Python

Easy to go low level
Bit banging
Structs
C integration
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The Pleasures of Python

Rapid development

Libraries
Cross platform
Tooling (tests, etc)
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The Pleasures of Python

Solid

Reliable
Maintainable

If you do it “right”

Fast enough
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But there are problems

And sometimes solutions
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The Problems

Constraints:
Memory
Disk
Licensing
Clocks
Performance
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The Problems

Behaviour:

Recovery
Debugging
Reliability
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The Problems

Infrastructure:
Deploying
Updating
Launching
Running
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Constraints

Memory
Disk
Licensing
Clocks
Performance
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Constraints: Memory

The famous OOM Kkiller
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Constraints: Memory

Avoid multiple CPython instances
(even when they should be separate)
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Constraints: Memory

for step in itertools.izip(
second.mainloop(),
first.mainloop()):

step()
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Constraints: Memory

Manually calling GC

while True:
do_stuff()
gc.collect()
time.sleep(1)
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Constraints: Memory

Manual memory management

lifetime
allocation in loops
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Constraints: Memory

oldgarb = len(gc.garbage)
while .
do stuff()
newgarb = len(gc.garbage)
assert oldgarb is newgarb
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Constraints: Disk

Less storage than RAM
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Constraints: Disk
tmpfs is RAM

What happens if you run out of
RAM?
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Constraints: Disk

binary .egg use a lot of space
(temp files, unpacking)
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Constraints: Disk

Ship .egg directories on
compressed filesystem
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Constraints: Disk

Ship .pyo files only
(ugly, but works)
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Constraints: Disk

Or disable cache files:
export PYTHONDONTWRITEBYTECODE=" 3
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Constraints: Disk

SQLite lock contention
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Constraints: Disk

def _execute(self, *args, **kwargs):
for attempt in range(self.timeout + 1):
try:
with self. connection:
return self. cursor.execute(*args, **kwargs)
except sqlite3.OperationalError as e:
if attempt == self.timeout:
raise
if e.args[0] == " "
time.sleep(1)
else:

raise
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Constraints: Licensing

We write GPL code
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Constraints: Licensing

GPL requires awareness
Need to save exact version
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Constraints: Licensing

Can't trust the Cheese Shop
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Constraints: Licensing

Licences:
Differ between pypi & code
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Constraints: Licensing

Licences:
Change between versions
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Constraints: Licensing

Licence summary:

GPL is good
BSD is good
MIT is good

Be careful and ever vigilant

Secure & efficient energy Information



Constraints: (RTC) Clocks

14! 14! Cthulhu!
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Constraints: (RTC) Clocks

Time warps due to clock sync
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Constraints: Clocks

There are ways to “cheat”

Jump to last time we logged
Go online
Fix clock and store difference
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Constraints: Clocks

Time Is relative

And semetimes wrong
And mostly wrong
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Constraints: Clocks

This causes Issues

“Do the time warp”
Timestamps
Racing

Locking
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Constraints: Clocks

All code has to be aware

readings
loops
lockfiles
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Constraints: Clocks

.pyc files newer than .py files
after updates
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Constraints: Clocks

It's better now (py3)
time.monotonic()
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Constraints: Clocks

Life without an RTC?
Painful, no matter what.

Secure & efficient energy Information



Constraints: Performance

Usually good enough
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Constraints: Performance

But without an FPU?
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Constraints: Performance

Fake .
(hint: Linux does it for you)
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Constraints: Performance

But still: Don’t do math
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Constraints: Performance

Most crypto doesn’t use
floating point
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Constraints: Performance

FPU-less hardware is slow
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Constraints: Performance

This makes race conditions...

Jfun
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Constraints: Performance

start A

start B

A loads modules... (10)
B starts faster...

B needs A.... (fail, crash)
A started
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Constraints: Performance

You need infrastructure

“T am functional”
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Constraints: Performance

You need infrastructure

Not usually present
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Constraints: Performance

Slow IO + Slow CPU

file collisions
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Constraints: Performance

with open(fnam, “r”) as f:

# Race happens here
unlink(fnam)
data = f.read()
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Constraints: Performance

Wanted: Proper support for
“atomic open & unlink”
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Constraints: Performance

with open(fnam, “ru”) as f:
os.path.exists(fnam)
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Constraints: Performance

Also Wanted: Proper support for
“‘open & lock”
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Constraints: Performance

with open(fnam, “w”) as f,
fcntl.flock(f) as lock:
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Behaviour

Recovery
Debugging
Reliability
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Behaviour: Recovery

“Crash only software”
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https://lwn.net/Articles/191059
https://lwn.net/Articles/191059

Behaviour: Recovery

No normal termination
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Behaviour: Recovery

No long lived processes
while True:
while periodical():
(Too complex to show)
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Behaviour: Debugging

Logging Exceptions to disk

sys.excepthook

oloading Excant
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Behaviour: Debugging

Exception hooks

def delayed exc(delay):
def dec(orig hook):
def exc hook(type , value, trace):
orig hook(type , value, trace)
if type 1is not
time.sleep(delay)
return exc_hook
return dec
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Behaviour: Debugging
Stacktrace on -SIGUSR1

def stacktrace on_sigusrl(logfile):
def stacktrace(sig, frame):
with open(logfile, ) as output:
with redirect stderr(output):
dumpstacks(sig, frame)
return
return signal.signal(signal.SIGUSR1,
stacktrace)
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Behaviour: Reliability

Delayed exceptions

“It's fine to crash, later”
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Behaviour: Reliability
Delayed Exceptions

error =
while mainloop():
if error:
raise error
for thing in things():

try.:
mangle(thing)
except as e:
error = e
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Behaviour: Reliability

What | want to write

while mainloop():
with delayed exceptions():
for thing in things():
mangle(thing)
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Behaviour: Debugging
(I want type hints)

def foonction(bar, baz):
assert isinstance(bar, Barclass)
assert isinstance(baz, Bazclass)
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Infrastructure

Deploying
Updating
Launching
Running
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Infrastructure: Code

We built our own for:

Deploy & Update
Manual cleanout

Including .pyc/.pyo __ pycache
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Infrastructure: Code

We built our own

It mostly looks like “rpm’

Secure & efficlent energy Information



Infrastructure

Launching
Running
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Infrastructure: Launching

Ordering
Wait for finish (signaling)
Timeout
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Infrastructure: Running

Is it running?

Has it hung?
Reliably restart
Locks & lockfiles?
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Infrastructure: systemd

Systemd fixes:

Launching
Event based
Signalling “I'm ok”
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systemd: signalling

def systemd ready(addr, sock):
msg =
if not (addr and sock):
return
try:
retval = sock.sendto(msg, addr)
except socket.error:
return
return (retval > 0)
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Infrastructure: systemd

Systemd fixes:

Running
e \Watchdog
e Restarting
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systemd: watchdog

def watchdog ping(addr, sock):
msg =
if not (addr and sock):
return False
try:
retval = sock.sendto(msg, addr)
except socket.error:
return False
return (retval > 0)
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Infrastructure: systemd

We like systemd
Replaced init+runit
Gained functionality

Secure & efficient energy Information



Recap

Python is a solid choice
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Recap

Python lacks some tooling

“crash later”
“Atomic read & unlink”
Type hints
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Recap

Python works in embedded
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Questions?

P.S. Code samples under MIT licence.
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